最新研究显示,人工智能可从人脸照片中识别出罕见遗传综合征
AI医生“看脸”就能识疾病
DeepGestalt首先识别患者面部的五官,然后将图像裁剪成100×100像素大小的区域。接下来,使用深度卷积神经网络对这些区域进行评估,分析每个综合征的概率。然后它综合整个图像的数据给出一个预测。
Face2Gene手机应用的使用示范
如今,人工智能在各个领域迅猛发展。新的研究表明,在医疗领域,人工智能可以帮助诊断罕见疾病。
约有8%的世界人口受到遗传综合征的困扰,此类患者往往具有可识别的面部特征。然而,遗传综合征的诊断过程却出奇陈旧,大多数时候需要医生手工测量面部特征之间的距离。1月7日,总部位于波士顿的人工智能公司FDNA发布了一项最新研究,他们发现,通过数万张真实患者面部图像的训练,人工智能能够以较高的准确度从人脸照片中识别出罕见遗传综合征。
“这是人们期待已久的医学遗传学突破,终于取得了成果,”凯伦·格里普在一份声明中说,她是一名医学遗传学家,也是这篇新论文的合著者。“通过这项研究,我们已经表明,在临床工作流程中添加一个自动的面部分析系统可以帮助实现早期诊断和治疗,有望改善生活质量。”
AI医生的“诊断”过程
训练算法
每年全球出生的儿童中约有6%患有严重的遗传综合征。早期发现这些综合征有助于治疗,但准确诊断往往是个漫长而昂贵的过程。部分问题在于基因综合征有数百种,其中许多非常非常罕见。正确的诊断和早期治疗,常常依赖于医生的经验以及他们以前是否遇到过类似案例。但是机器学习可以改变这种情况。
格里普和她的同事们想创造一种人工智能,能够通过病人面部图像识别基因综合征。为此,研究小组建立了一个名为“DeepGestalt”的深度学习算法,它可以分析面部特征,找出特定遗传综合征日前发表在《自然医学》杂志上的新研究报告称,他们使用了一个包含15万多名患者的数据集来训练这种算法。
DeepGestalt算法首先识别患者面部的五官,例如眼睛、鼻子和嘴巴,然后将图像裁剪成100×100像素大小的区域。接下来,该技术使用深度卷积神经网络对这些区域进行评估。深度卷积神经网络是一种机器学习技术,已经成为自动图像分类的领先模型。对于每个面部区域,DeepGestalt分析每个综合征的概率,然后它综合整个图像的数据给出一个预测。



×