中工娱乐

准确预测植物根系有机污染物的累积量,机器学习模型做到了!

来源:工人日报客户端
2022-01-13 14:01:44

  原标题:准确预测植物根系有机污染物的累积量,机器学习模型做到了!

  工人日报-中工网记者 黄哲雯

  近日,中国农业科学院植物保护研究所农药应用风险控制创新团队首次利用机器学习模型直接预测植物根部从土壤中吸收累积农药等有机污染物的量,解决了传统线性模型无法模拟农药被植物吸收的非线性关系,并揭示了影响植物累积农药的关键化学分子结构,为农产品在产地环境化学污染的预测提供了新的工具和手段。

  据介绍,农作物累积是农业污染物从土壤进入人类食物链的重要途径。准确预测植物吸收和累积农业污染物对保障食品安全、产地修复和人类健康暴露评估具有重要的意义。然而,由于污染物-土壤-植物根系之间复杂的相互作用,建立稳健可靠的预测模型仍然具有很大挑战性。

  传统的线性预测模型难以预测污染物-土壤-植物间的非线性关系,导致预测值与实际值差异较大。为此,该团队对比了四种不同的机器学习算法,通过对341个数据点、72个化合物的数据集进行训练,预测植物根系富集值,证明了新构建的GBRT-ECFP为最优预测模型,并通过5倍交叉验证评估了预测性能,其中R2值为0.77,平均绝对误差(MAE)为0.22。

  此外,该研究解析了化学分子、土壤与植物特性之间的非线性关系。子结构重要性分析明确了分子子结构与植物富集之间的关系,确定了含氧基团(−O)、含氯基团(−Cl)、芳环和大共轭π系统等为与植物累积相关的关键化学子结构。

  该研究成功利用机器学习作为新兴手段预测农田作物对农药等污染物的吸收累积,展现了预测工具的先进性和通用性,为未来新农药植物吸收潜能评估和农田农药污染安全评价提供新的可靠工具。

责任编辑:陈思南

媒体矩阵


  • 中工网客户端

  • 中工网微信
    公众号

  • 中工网微博
    公众号

  • 中工网抖音号

中工网客户端

亿万职工的网上家园

马上体验
关于我们 | 版权声明 | 违法和不良信息举报电话:010-84151598 | 网络敲诈和有偿删帖举报电话:010-84151598
Copyright © 2008-2022 by www.workercn.cn. all rights reserved
扫码关注

中工网微信


中工网微博


中工网抖音


工人日报
客户端
×